Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Effects of Initial In-Cylinder Flow Field on Mixture Formation in a Premixed Compression Ignition Engine

2000-03-06
2000-01-0331
To find more effective lean mixture preparation methods for smokeless and low NOx combustion, a numerical study of the effects of in-cylinder flow field before injection on mixture formation in a premixed compression ignition engine was conducted. Premixed compression ignition combustion is a very attractive method to reduce both NOx and soot emissions, but it still has some problems, such as high HC and CO emissions. In case of early direct injection, it is important to avoid wall wetting by spray impingement, which can cause higher HC and CO emissions. Since it is not easy to examine the effects of initial flow and injection parameters on mixture formation over the wide range by practical engine tests, a computer program named “GTT (Generalized Tank and Tube)” code was used to simulate the in-cylinder phenomena before autoignition.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
Technical Paper

Combustion Process Modeling using a Reduced Mechanism in an LPG Lean Burn SI Engine

1999-10-25
1999-01-3481
Flame propagation characteristics, in a heavy-duty type LPG lean burn SI engine, were investigated by simulation methodology, using the global one step and the ten step chemical kinetic reaction mechanisms, respectively. The swirl ratio and equivalence ratio were varied to investigate their effects on flame front speed. The effect of increased swirl intensity on flame speed was very minor at ranges of equivalence ratio of this study. Flame front shape, however, was affected by swirl intensity. Circular flame front formed for a higher swirl ratio, which is in a qualitative accordance with that of measurements. Comparison between calculation and measurements of flame propagation characteristics shows a good agreement for both the global one step and the ten step chemical kinetic model. This work concludes that the reduced chemical kinetic reactions, consisting of ten steps, is useful for flame propagation study in an LPG SI engine.
Technical Paper

Spectroscopic Investigation of the Combustion Process in an LPG Lean-burn SI Engine

1999-10-25
1999-01-3510
Band spectrum images for CH, OH and CHO were taken in a heavy duty type LPG lean-burn SI engine, to investigate the combustion process as it pertains to the pollutant formation process in the post flame region. Full spectra and band spectrum flame images were observed with a bottom view single cylinder research engine and two high speed cameras. NOx emissions were also measured for excess air ratios ranging from 1.0 to 1.6. A thermodynamic model, including the detailed chemical kinetic mechanism for LPG and NOx formation reactions, was developed to predict the major reaction species in the post flame region, and NOx emissions during the combustion process. The model qualitatively described the flame images for each band spectrum and could predict the measured NOx emissions very well.
Technical Paper

Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles

1999-05-03
1999-01-1513
Performance and emissions of an LPG lean burn engine for heavy duty vehicles were measured. The piston cavity, swirl ratio, propane - butane fuel ratio, and EGR were varied to investigate their effects on combustion, and thus engine performance. Three piston cavities were tested: a circular flat-bottomed cavity with sloped walls (called the “bathtub” cavity), a round bottomed cavity (called the “dog dish” cavity), and a special high-turbulence cavity (called the “nebula” cavity). Compared to the bathtub and dog dish cavities, the nebula type cavity showed the best performance in terms of cyclic variation and combustion duration. It was capable of maintaining leaner combustion, thus resulting in the lowest NOx emissions. High swirl improved combustion by achieving a high thermal efficiency and low NOx emissions. In general, as the propane composition increased, cyclic variation fell, NOx emissions increased, and thermal efficiency was improved.
Technical Paper

Observation of Flame Propagation in an LPG Lean Burn SI Engine

1999-03-01
1999-01-0570
Using an extended bottom view piston having a quartz window, flame propagation observation and flame contour analysis were carried out to investigate the combustion characteristics of a heavy-duty type LPG lean burn engine. The swirl ratio and piston cavity configuration were varied to investigate their effects on combustion and engine performance. Gradual reduction of NOx but increased hydrocarbon emissions were measured for leaner mixtures compared to the stoichiometric operation. High swirl apparently accelerated the initial flame kernel development, as evidenced by a shorter crank angle interval from the spark ignition to the maximum cylinder pressure. The ‘D’ type cavity, with an increased squish area located below the intake valve, was shown to have the shortest burn duration among the piston cavities tested. The experimental flame propagation observation procedure was shown to be useful for the study of the combustion process in engines.
Technical Paper

Comparison of Spray Characteristics in Butane and Diesel Fuels by Numerical Analysis

2000-10-16
2000-01-2941
The spray characteristics of n-butane were analyzed numerically using KIVA-3V code and compared with those of diesel under the same boundary conditions. The transient behavior of hollow cone spray was calculated not only in a constant volume chamber under various ambient conditions, but also in a premixed compression ignition engine. The spray characteristics were evaluated in terms of spray tip penetration and droplet size distribution. Various atomization sub-models such as TAB, Wave breakup and Wave-KH (Kelvin-Helmholtz) model were implemented in the code and validated by comparison with experimental data. The results show that mixture formation for butane proceeds faster than diesel fuel primarily due to a higher evaporation rate caused by butane's higher diffusivity in air. Furthermore, in a premixed compression ignition engine, the mixture of butane becomes more homogeneous than diesel by the end of compression stroke.
Technical Paper

Development of LPG SI and CI Engines for Heavy Duty Vehicles

2000-06-12
2000-05-0166
Development of LPG SI and CI engines for heavy duty vehicles has been carried out. In order to measure the performance and emissions of an LPG lean burn SI engine, the piston cavity, swirl ratio, and propane-butane fuel ratio were varied and tested. Compared to the bathtub and dog dish cavities, the nebula type cavity showed the best performance in terms of cyclic variation and combustion duration. High swirl improved combustion by achieving a high thermal efficiency and low NOx emissions. A feasibility study of an LPG DI diesel engine also has been carried out to study the effectiveness of the selected cetane enhancing additives:Di-tertiary-butyl peroxide (DTBP). When more than 5 wt% DTBP was added to the base fuel, stable engine operation over a wide range of engine loads was possible. The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%.
Technical Paper

Methodology of Lubricity Evaluation for DME Fuel based on HFRR

2011-11-08
2011-32-0651
The methodology of lubricity evaluation for DME fuel was established by special modified HFRR (High-Frequency Reciprocating Rig) such as Multi-Pressure/Temperature HFRR (MPT-HFRR). The obtained results were summarized as follows: The HFRR method is adaptable with DME fuel. There is no effect of the test pressure (up to 1.8 MPa) and the test temperature (up to 100°C) of MPT-HFRR on wear scar diameter. The results with MPT-HFRR can be applied at the sliding parts of the injection needle and the fuel supply pump's plungers which are secured lubricity by the boundary lubrication mode mainly and the mixed lubrication mode partially. Using the fatty-acid-based lubricity improver in amounts of approximately 100 ppm, the lubricity of DME, which has a lack of self-lubricity, is ensured as same as the diesel fuel equivalent level. There is a big deviation of measured wear scar diameter when the LI concentration is not enough.
X